www.shdcomposites.com

Tel: +44 (0) 1529 307629 sales@shdcomposites.com

PS200

Highly Flame Retardant Prepreg

Introduction

PS200 is a highly flame-retardant bio-derived prepreg resin system designed for use in heat and flame shielding applications. Typically used in non-structural or semi-structural components, the properties of PS200 can be tailored to provide unique service performance characteristics across a wide range of temperatures. It can be supplied on a variety of reinforcement types and the resin system colour is dark brown / black.

Typical applications: Heat shielding and fire containment components and enclosures

Key Features & Benefits

- Initial cure temperature from 100°C
- Long term service temperature up to 250°C, depending on applications
- 15-minute abuse temperature resistance up to 1200°C
- Work life at 20°C: 21 days
- Storage life at -18°C: 12 months
- Rated UL94 V0

Available Reinforcements (standard)

Carbon: 200g/m² 2x2 twill fabric, T300 3K fibre

Glass: 300g/m² 8 harness satin fabric, E-glass fibre

Note – other reinforcements are available on request. Please enquire for details.

Storage & Out Life

This material should be kept frozen at -18°C for a maximum storage life. If kept refrigerated at 6°C storage life will be reduced to 2 months. It must be kept sealed in a polythene bag which must not be opened until fully thawed to room temperature. If the material is not fully used, then the material must be resealed in the polythene bag to prevent moisture absorption.

www.shdcomposites.com

Tel: +44 (0) 1529 307629 sales@shdcomposites.com

Cure Cycles & performances

RECOMMENDED CURE CYCLES:

Autoclave cure

P3 Release film recommended

- For carbon prepreg:
 - o 90°C for 15 mins then 100°C for 3 hrs, at a ramp rate of 2-3°C/min
- For glass prepreg:
 - o 90°C for 15 mins then 130°C for 1 hr, at a ramp rate of 2-3°C/min

Oven cure

Contact SHD for details

Press cure

Contact SHD for details

Notes:

- The cures given are as a guide only and will be subject to changes in part geometry and construction.
- Other cure cycles may be considered depending on the exact reinforcement type and laminate requirements. As PS200 is new and unique resin technology we would strongly recommend you contact SHD's Technical Department for more detailed advice.
- Due to the chemical nature of this material, water is evolved during the cure. If press curing, the press may need to be vented during the cure for best results. If curing under vacuum, it is recommended that a water trap is placed in the vacuum line to prevent moisture contamination to the vacuum system.

www.shdcomposites.com

Tel: +44 (0) 1529 307629 sales@shdcomposites.com

Cured Material Properties

Flame Propagation

UL94 vertical burn rating: V0

Revised: 09th September 2022

Material tested: 8x PS200 - G300 (7781) - 33%RW prepreg

Cured 1h@130°C

UL94 conditions and ratings

Conditions	V-0	V - 1	V-2
Afterflame time for each individual specimen A or B	≤ 10 s	≤ 30 s	≤ 30 s
Total afterflame time for any condition set (A+B) for 5 specimens	≤ 50 s	≤ 250 s	≤ 250 s
Afterflame plus afterglow time for each individual specimen after the second flame application (B+C)	≤ 30 s	≤ 60 s	≤ 60 s
Afterflame or afterglow of any specimen up to the holding clamp	NO	NO	NO
Cotton indicator ignited by flaming particles or drops	NO	NO	YES

Test results

MT/GM/2642	PS200 2mm laminate material				
Specimen No.	Α	В	С	D	Е
1	2.0	8.2	Nil	No	No
2	2.0	5.1	Nil	No	No
3	2.5	8.1	Nil	No	No
4	2.0	6.2	Nil	No	No
5	2.0	8.8	Nil	No	No

23°C conditioned

MT/GM/2642	PS200 2mm laminate material				
Specimen No.	Α	В	С	D	E
1	2.0	4.1	Nil	No	No
2	2.60	3.0	Nil	No	No
3	2.90	8.0	Nil	No	No
4	2.70	5.0	Nil	No	No
5	2.10	5.2	Nil	No	No

70°C conditioned

www.shdcomposites.com

Tel: +44 (0) 1529 307629 sales@shdcomposites.com

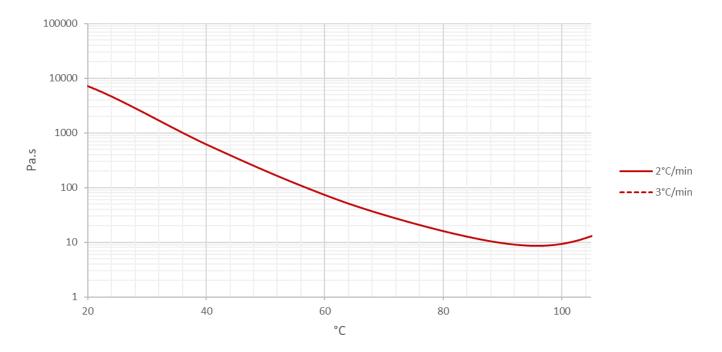
Mechanical Properties

Tests performed on **PS200-C200T-HS-3K-42%RW** laminates

(200gsm 2x2 twill, T300 3k carbon fabric)

Test	Results			Standard
Vf	Fibre volume fraction	54.99	%	BS EN ISO 14127
				Method B
СРТ	Cured ply thickness	0.210	mm	BS EN ISO 14127
				Method B
Tensile 0°	Tensile strength	752	MPa	BS EN ISO 527-4
	Tensile modulus	63.3	GPa	
	Poisson's ratio	0.03		
Tensile 90°	Tensile strength	665	MPa	
	Tensile modulus	62.0	GPa	
	Poisson's ratio	0.04		
Compressive 0°	Compressive strength	604	MPa	prEN 2850 Type B
	Compressive modulus	58.9	GPa	
Compressive 90°	Compressive strength	537	MPa	
	Compressive modulus	58.1	GPa	
Flexural 0°	Flexural strength	804	MPa	BS EN ISO 14125
	Flexural modulus	60.1	GPa	
Flexural 90°	Flexural strength	635	MPa	
	Flexural modulus	58.1	GPa	
In-Plane Shear ±45°	In-Plane shear strength (5% strain)	56.5	MPa	BS EN ISO 14129
	In-Plane shear strength (ultimate)	68.7	MPa	
	In-Plane shear modulus	3.54	GPa	
Interlaminar Shear 0°	Interlaminar shear strength	39.0	MPa	BS EN ISO 14130
Interlaminar Shear 90°	Interlaminar shear strength	39.8	MPa	
DMA – Dry Tg	Tg E' Onset	78	°C	Modified ASTM D7028
Initial cure	Tg Peak Tan δ	118*	°C	(Single Cantilever)

Mechanical testing carried out at 21 ± 2 °C. Initial cure: 15mins at 90°C followed by 3hrs at 100°C, autoclave 6bar. All figures in this report are actual test results and have not been normalised. Testing was either completed by SHD Composites laboratories, or independently by UKAS approved organisations. Complete test reports can be supplied independently upon request. *PS200 can potentially reach a Peak Tan δ Tg above 232°C after high temperature post-cure cycles.


www.shdcomposites.com

Tel: +44 (0) 1529 307629 sales@shdcomposites.com

Viscosity Profile

Testing carried out using a rotational rheometer.

Health and Safety

Revised: 09th September 2022

Please refer to the product Safety Data Sheet before using this material. The following precautions must be taken when using PFA resin prepregs:

- Impervious gloves are recommended.
- To avoid exotherm, particular care must be taken with thick laminates.
- Ramp rates must not exceed 3.0°C/min during initial cure and 1.0°C/min during post cure.

Disclaimer: Technical advice, instruction, data or recommendation, whether verbal or in writing, is given in good faith. The SHD company providing any such advice gives no warranty or guarantee, whether express or implied, in relation to such advice.

Customers must carry out their own tests and assessments as necessary in order to determine the quality and suitability of the product for their particular application and circumstances. Such testing should be performed under conditions identical to those to which the final component/product may be subjected. Values listed in any SHD document are for typical properties of the product or substance in question and are not intended to be used in establishing either statistical specifications nor engineering basis values. They do not constitute either minimum or maximum values for the product or substance in question.