www.shdcomposites.com

Tel: +44 (0) 1529 307629 sales@shdcomposites.com

MTE500 Epoxy Component Prepreg

Introduction

MTE500 prepregs represent an evolution in handling, processing, and cost-efficient performance for a wide range of advanced composite applications. The MTE500 resin system delivers good mechanical properties, while offering superior handling (particularly on heavier weight reinforcements), excellent cosmetic quality, a long work/storage life, and broad processing versatility with various reinforcements and prepreg formats.

This resin system is available combined with an extensive range of woven fabric and unidirectional tape reinforcements.

Typical applications: General purpose, cosmetic applications

Key Features & Benefits

- Cure temperature of **120°C (± 5°C)**
- Glass transition temperature above 120°C
- Low CTE and shrinkage
- Work life at 20°C: 60 days
- Storage life at -18°C: **24 months**
- Very low VOC content no added solvents during manufacture

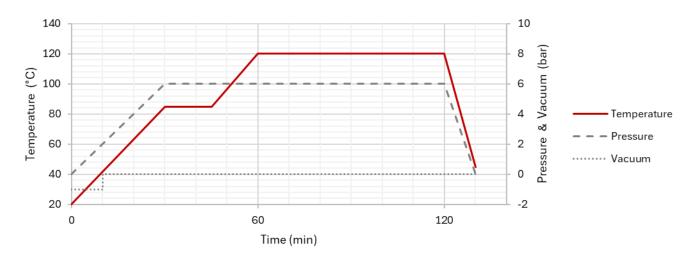
Reinforcement Types

MTE500 is available with a wide range of reinforcement types in both fabric and UD formats. Carbon, glass, aramid and natural fibre types are typical but please request information from SHD Technical Support for your specific requirements.

MTE500 is also made available in a limited range of carbon fibre NSR (Non-Specific Reinforcement) prepregs where extra cost competitiveness may be possible.

www.shdcomposites.com

Tel: +44 (0) 1529 307629 sales@shdcomposites.com


Storage & Out Life

This material should be kept frozen at -18°C. It must be kept sealed in a polythene bag which must not be opened until fully thawed to room temperature. If the material is not fully used, then the material must be resealed in the polythene bag to prevent moisture absorption.

Cure Cycle

For optimum results SHD Composites advises to follow the recommended cure cycle below.

- Recommended Initial cure:
 - Ramp up to 85°C at a rate of 2-3°C/min
 - 1st dwell at 85°C for 15mins
 - Ramp up to 120°C (± 5°C) at a rate of 2-3°C/min
 - 2nd dwell at **120°C (± 5°C)** for **1h**
- Ensure full pressure (6 bar) is reached prior to the 1st dwell (85°C).
- Maintain full vacuum until 2 bar pressure is reached, then vent vacuum to atmosphere.

- The above curing schedule is meant to be a guide only and is subject to local conditions
- To avoid exotherm particular care must be taken with thick laminates
- Ramp rates must not exceed **3.0°C** per minute during cure
- Contact the SHD Technical team for further advice on alternative cures

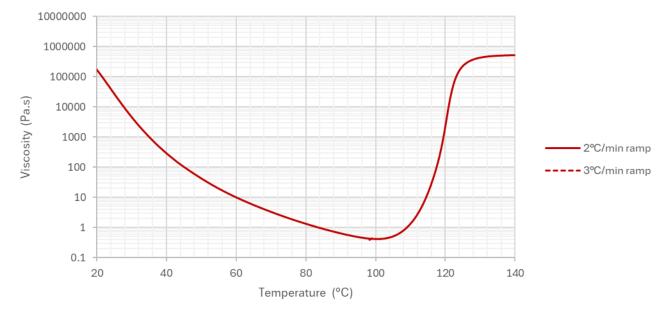
www.shdcomposites.com

Tel: +44 (0) 1529 307629 sales@shdcomposites.com

Mechanical Properties

	SHD Part:	MTE500- C200T-HS-3K- 42%RW-1250	MTE500- C415T-HS-12K- 38%RW-1250	MTE500- C650T-HS-12K- 35%RW-1250		
	Fabric Type:	200gsm 2x2 twill	415gsm 2x2 twill	650gsm 2x2 twill		
	Fibre Type:	HS 3K carbon fibre	HS 12K carbon fibre	HS 12K carbon fibre		
Test	Typical Results				Unit	Typical Method
Vf	Fibre volume fraction	45.52 – 51.67	49.17 – 55.52	51.25 – 57.71	%	BS EN ISO 1412
СРТ	Cured ply thickness	0.219 - 0.248	0.415 – 0.469	0.626 - 0.705	mm	BS EN ISO 1412
Density	Density	1.46 – 1.50	1.50 – 1.54	1.51 – 1.55	g/cm ³	ASTM D792
Tensile	0° Strength 0° Modulus 0° Poisson's ratio	> 550 50 - 60 0.04 - 0.09	> 700 55 - 65 0.03 - 0.07	> 600 53 - 60 0.05 - 0.12	MPa GPa	BS EN ISO 527-4
	90° Strength 90° Modulus 90° Poisson's ratio	> 550 50 60 0.04 0.09	> 700 55 - 65 0.03 - 0.07	> 600 53 - 60 0.05 - 0.12	MPa GPa	
Compressive	0° Strength 0° Modulus	> 600 46 - 55	> 550 50 — 60	> 450 44 - 53	MPa GPa	EN 2850 Type E
	90° Strength 90° Modulus	> 600 46 – 55	> 550 50 — 60	> 450 44 – 53	MPa GPa	
Flexural	0° Strength 0° Modulus	> 800 48 - 57	> 800 50 — 60	> 680 45 - 53	MPa GPa	BS EN ISO 1412
	90° Strength 90° Modulus	> 800 48 - 57	> 800 50 — 60	> 680 45 - 53	MPa GPa	
In-Plane Shear (±45°)	Strength, 5% strain Strength, ultimate Modulus	> 55 > 95 3.0 - 3.8	> 55 > 85 3.0 - 4.0	> 55 > 85 3.0 - 4.0	MPa MPa GPa	BS EN ISO 1412
Interlaminar Shear	0° Strength 90° Strength	> 60 > 60	> 50 > 50	> 50 > 50	MPa MPa	BS EN ISO 1413
Dry Tg (DMA)	Tg E' Onset Tg Peak Tan δ	120 - 140 130 - 155	120 - 140 130 - 155	120 - 140 130 - 155	າ ເ	ASTM D7028
Wet Tg* (DMA)	Tg E' Onset Tg Peak Tan δ	80 - 100 90 - 110	80 - 100 90 - 110	80 - 100 90 - 110	°C °C	

*For specimens conditioned by being submerged in water at 70°C for 14 days.


The figures above are typical properties expected from these materials, cured under the recommended conditions of temperature and pressure. They are indicative only. Actual test reports demonstrating these figures can be supplied independently upon request.

www.shdcomposites.com

Tel: +44 (0) 1529 307629 sales@shdcomposites.com

Viscosity Profile

Health and Safety

This material contains epoxy resin which can cause allergic reactions with skin contact and must avoid repeated and prolonged skin contact.

Please refer to the product Safety Data Sheet before using this material. The following precautions must be taken when using epoxy resin prepregs:

- Overalls must be worn.
- Impervious gloves must be worn.
- Curing schedule is meant to be as a guide only and is subject to local conditions.
- To avoid exotherm, particular care must be taken with thick laminates.
- Ramp rates must not exceed 3.0°C/min during cure.

Disclaimer: Technical advice, instruction, data or recommendation, whether verbal or in writing, is given in good faith. The SHD company providing any such advice gives no warranty or guarantee, whether express or implied, in relation to such advice.

Customers must carry out their own tests and assessments as necessary in order to determine the quality and suitability of the product for their particular application and circumstances. Such testing should be performed under conditions identical to those to which the final component/product may be subjected. Values listed in any SHD document are for typical properties of the product or substance in question and are not intended to be used in establishing either statistical specifications nor engineering basis values. They do not constitute either minimum or maximum values for the product or substance in question.