www.shdcomposites.com

Tel: +44 (0) 1529 307629 sales@shdcomposites.com

MTC400-1 Epoxy Component Prepreg

Introduction

MTC400-1 is an epoxy resin system designed to cure between 80°C and 135°C allowing flexibility in component manufacture. It is a toughened epoxy resin system designed for component manufacturing that can be supplied on a variety of fabrics and in UD format to meet your cost and manufacturing requirements.

Typical applications: Motorsport / Aerospace

Key Features & Benefits

- Cure temperature from **80°C** to **135°C**
- Service temperature up to 200°C after post cure
- Low CTE and shrinkage
- Work life at 20°C: **30 days**
- Storage life at -18°C: **12 months**
- Very low VOC content no added solvents during manufacture
- Improved toughness over MTC400

Storage & Out Life

This material should be kept frozen at -18°C. It must be kept sealed in a polythene bag which must not be opened until fully thawed to room temperature. If the material is not fully used, then the material must be resealed in the polythene bag to prevent moisture absorption.

www.shdcomposites.com

Tel: +44 (0) 1529 307629 sales@shdcomposites.com

Cure Cycles & performances

CURE CYCLE OPTIONS:

Temperature		Duration		Тg
80°C	(minimum)	16	hours	90°C
90°C		8	hours	100°C
100°C		4	hours	110°C
110°C		2	hours	120°C
135°C	(maximum)	1	hour	145°C
180°C	Post Cure	2	hours	205°C

- Curing Schedule is meant to be a guide only and is subject to local conditions.
- To avoid exotherm particular care must be taken with thick laminates.
 Ramp rates must not exceed 3.0°C per minute during initial cure.
 Ramp rates must not exceed 0.3°C per minute during post cure (free standing).

www.shdcomposites.com

Tel: +44 (0) 1529 307629 sales@shdcomposites.com

Cured Material Properties

PLY: 200gsm 2x2 twill 6k, 42% resin weight Material description: MTC400-1-C200T-T800-42%RW-1250 (SHD0447-1250)

Test	Results			Standard
Vf	Fibre volume fraction	48.79	%	BS EN ISO 14127
				Method B
СРТ	Cured ply thickness	0.225	mm	BS EN ISO 14127
				Method B
Tensile 0°	Tensile strength	981	MPa	BS EN ISO 527-4
	Tensile modulus	67.0	GPa	
	Poisson's ratio	0.07		
Toncilo 00º	Tancila strongth	902	MDe	
Tensile 90	Tensile medulus	032 66 E	CDo	
	Poisson's ratio	00.5	GPa	
		0.07		
Compressive 0°	Compressive strength	737	MPa	prEN 2850 Type B
·	Compressive modulus	61.0	GPa	. ,,
Compressive 90°	Compressive strength	765	MPa	
	Compressive modulus	61.7	GPa	
Flexural 0°	Flexural strength	1032	MPa	BS EN ISO 14125
	Flexural modulus	64.5	GPa	
Flexural 90°	Flexural strength	1056	MPa	
	Flexural modulus	64.9	GPa	
In Diana Chaor +45°	In Plana shear strength (E% strain)	05.0	MDo	
III-Plane Shear 145	In-Plane shear strength (ultimate)	93.9 110 C	MDo	B3 EN 130 14129
	In-Plane shear modulus	110.0	GPa	
		4.00	Gra	
Interlaminar Shear 0°	Interlaminar shear strength	97.4	MPa	BS EN ISO 14130
Interlaminar Shear 90°	Interlaminar shear strength	91.8	MPa	
	5			
Fracture Toughness (G1c)	G _{1c}	390	J/m²	prEN 6033
DMA – Dry Tg	Tg E' Onset	154	°C	Modified ASTM D7028
	Tg Peak Tan δ	222	°C	(Single Cantilever)

Cure schedule: 15 mins @ 85°C then 90 mins @ 135°C, 2°C/min ramp rate (solid release, autoclave cured, 6 bar). All figures in this table are actual test results and have not been normalised. Complete test reports can be supplied independently upon request.

www.shdcomposites.com

Tel: +44 (0) 1529 307629 sales@shdcomposites.com

Viscosity Profile

Measured using a rotational rheometer

Health and Safety

This material contains epoxy resin which can cause allergic reactions with skin contact and must avoid repeated and prolonged skin contact.

Please refer to the product Safety Data Sheet before using this material. The following precautions must be taken when using epoxy resin prepregs:

- Overalls must be worn.
- Impervious gloves must be worn.
- Curing schedule is meant to be as a guide only and is subject to local conditions.
- To avoid exotherm, particular care must be taken with thick laminates.
- Ramp rates must not exceed 3.0°C/min during initial cure and 0.3°C/min during post cure.

Disclaimer: Technical advice, instruction, data or recommendation, whether verbal or in writing, is given in good faith. The SHD company providing any such advice gives no warranty or guarantee, whether express or implied, in relation to such advice.

Customers must carry out their own tests and assessments as necessary in order to determine the quality and suitability of the product for their particular application and circumstances. Such testing should be performed under conditions identical to those to which the final component/product may be subjected. Values listed in any SHD document are for typical properties of the product or substance in question and are not intended to be used in establishing either statistical specifications nor engineering basis values. They do not constitute either minimum or maximum values for the product or substance in question.#

SHD/MISC/945 Issue: 1