www.shdcomposites.com

Tel: +44(0)1529 307629 sales@shdcomposites.com

FR308

Flame Retardant Prepreg

Introduction

FR308 prepreg is a flame retardant resin system meeting the flame, smoke and toxicity (FST) requirements of aerospace standard CS 25.853 and rail standard EN 45545. It can be supplied on a variety of fabrics to meet your cost and manufacturing requirements. This resin system colour is dark brown / black.

Typical applications: Aerospace / Rail / Flame retardant

Key Features & Benefits

- FST properties:
 - CS 25.853 compliant (Heat Release < 25kW/m²)
 - o EN 45545 compliant, rated HL3
- Cure temperature from 100°C
- Work life at 20°C: 21 days
- Storage life at -18°C: 12 months

Available Reinforcements (standard)

Carbon: 200g/m² 2x2 twill fabric, T300 3K fibre

Glass: 300g/m² 8 harness satin fabric, E-glass fibre

 $\label{lem:note-of-the-order} \textbf{Note-other reinforcements may be available on request. Please enquire for details.}$

Storage & Out Life

This material should be kept frozen at -18°C for a maximum storage life. If kept refrigerated at 6°C storage life will be reduced to 2 months. It must be kept sealed in a polythene bag which must not be opened until fully thawed to room temperature. If the material is not fully used, then the material must be resealed in the polythene bag to prevent moisture absorption.

SHD/MISC/945 Issue: 1 21st June 2022

Revised: 09th September 2022 Uncontrolled copy when printed

www.shdcomposites.com

Tel: +44(0)1529 307629 sales@shdcomposites.com

Cure Cycles & performances

RECOMMENDED CURE CYCLES:

Autoclave cure

P3 Release film recommended

- For carbon prepreg:
 - o 90°C for 15 mins then 100°C for 3 hrs, at a ramp rate of 2-3°C/min
- For glass prepreg:
 - o 90°C for 15 mins then 130°C for 1 hr, at a ramp rate of 2-3°C/min

Oven cure

Contact SHD for details

Press cure

Contact SHD for details

Notes:

- The cures given are as a guide only and will be subject to changes in part geometry and construction.
- Other cure cycles may be considered depending on the exact reinforcement type and laminate requirements. As FR308 is new and unique resin technology we would strongly recommend you contact SHD's Technical Department for more detailed advice.
- Due to the chemical nature of this material, water is evolved during the cure. If press curing, the press may need to be vented during the cure for best results. If curing under vacuum, it is recommended that a water trap is placed in the vacuum line to prevent moisture contamination to the vacuum system.

SHD/MISC/945 Issue: 1 21st June 2022

www.shdcomposites.com

Tel: +44(0)1529 307629 sales@shdcomposites.com

Cured Material Properties

Flame, Smoke and Toxicity properties

CS 25.853		Results	Limit			
60s vertical burn		0.2	6.0	in	PASS	
15s horizontal burn		0.0	2.5	in/min	PASS	
Heat release	Peak	20.4	65	kW/m2	PASS	
	2 min average	14.1	65	kW.min/m2		
Smoke emission		4.27	200		PASS	
Toxic gas emission	CO	115	1000			
	HCN	1	150		PASS	
	HF	0	100			
	HCL	2	150			
	SO2	0	100			
	NOx	5	100			

Material tested: 8 plies of FR308-G300-8HS-33%RW prepreg Cured $1h@130^{\circ}C$

CS 25.853 – Sandwich panel		Results	Limit			
Heat release	Peak	20.8	65	kW/m2	PASS	
	2 min average	17.6	65	kW.min/m2/		

Material tested: 2 plies of FR308-G300-8HS-42%RW prepreg on each side of a 12mm Nomex core Cured $1h@130^{\circ}C$

EN 45545		Results	Limit	Rating		
			HL1	HL2	HL3	
ISO 5658-2	CFE (kW/m2)	44.47	20 (min)	20 (min)	20 (min)	HL1, HL2, HL3
ISO 5660-1	MAHRE (kW/m2)	30.3	N/A	90	60	HL1, HL2, HL3
ISO 5659-2	DS4	38.5	600	300	150	HL1, HL2, HL3
	VOF4	83.34	1200	600	300	HL1, HL2, HL3
EN 45545-2	CITG (4min)	0.007	1.2	0.9	0.75	HL1, HL2, HL3
Annex C.1	CITG (8min)	0.009	1.2	0.9	0.75	HL1, HL2, HL3

Material tested: 8 pies of FR308-G300-8HS-38%RW prepreg

Autoclave cured (6bar) 1h@130°C

Tests completed independently by a UKAS approved organisation. Tests results can be supplied upon request.

www.shdcomposites.com

Tel: +44(0)1529 307629 sales@shdcomposites.com

Mechanical Properties

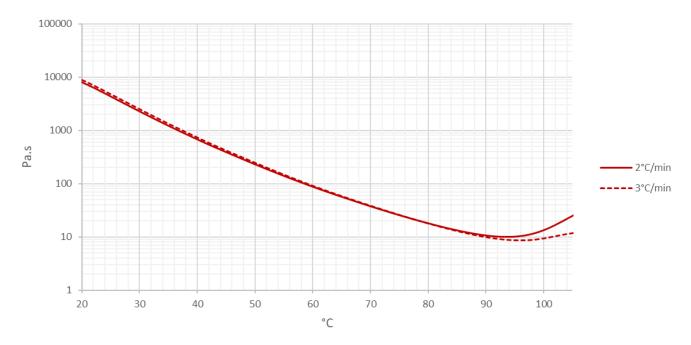
Tests performed on **FR308-G300-8HS-38%RW** laminates

(300gsm 8 harness satin fabric, E-glass fibre)

Test	Results			Standard
Vf	Fibre volume fraction	52.87	%	BS EN ISO 14127
				Method B
СРТ	Cured ply thickness	0.225	mm	BS EN ISO 14127
				Method B
Tensile 0°	Tensile strength	397	MPa	BS EN ISO 527-4
	Tensile modulus	23.5	GPa	
	Poisson's ratio	0.08		
Tensile 90°	Tensile strength	307	MPa	
	Tensile modulus	21.2	GPa	
	Poisson's ratio	0.07		
Compressive 0°	Compressive strength	605	MPa	prEN 2850 Type B
	Compressive modulus	26.1	GPa	
Compressive 90°	Compressive strength	494	MPa	
	Compressive modulus	24.4	GPa	
Flexural 0°	Flexural strength	593	MPa	BS EN ISO 14125
	Flexural modulus	24.0	GPa	
Flexural 90°	Flexural strength	606	MPa	
	Flexural modulus	21.0	GPa	
In-Plane Shear ±45°	In-Plane shear strength (5% strain)	46.3	MPa	BS EN ISO 14129
	In-Plane shear strength (ultimate)	74.0	MPa	
	In-Plane shear modulus	3.20	GPa	
Interlaminar Shear 0°	Interlaminar shear strength	45.8	MPa	BS EN ISO 14130
Interlaminar Shear 90°	Interlaminar shear strength	44.1	MPa	
DMA – Dry Tg	Tg E' Onset	142	°C	Modified ASTM D7028
Initial cure	Tg Peak Tan δ	181*	°C	•

Mechanical testing carried out at $21\pm2^{\circ}$ C. Initial cure: 15mins at 90° C followed by 1hr at 130° C, autoclave 6bar. All figures in this report are actual test results and have not been normalised. Testing was either completed by SHD Composites laboratories, or independently by UKAS approved organisations. Complete test reports can be supplied independently upon request. *FR308 can potentially reach a Peak Tan δ Tg above 232°C after high temperature post-cure cycles.

SHD/MISC/945 Issue: 1 21st June 2022


www.shdcomposites.com

Tel: +44(0)1529 307629 sales@shdcomposites.com

Viscosity Profile

Testing carried out using a rotational rheometer.

Health and Safety

Please refer to the product Safety Data Sheet before using this material. The following precautions must be taken when using PFA resin prepregs:

- Impervious gloves are recommended.
- To avoid exotherm, particular care must be taken with thick laminates.
- Ramp rates must not exceed 3.0°C/min during initial cure and 1.0°C/min during post cure.

Disclaimer: Technical advice, instruction, data or recommendation, whether verbal or in writing, is given in good faith. The SHD company providing any such advice gives no warranty or guarantee, whether express or implied, in relation to such advice.

Customers must carry out their own tests and assessments as necessary in order to determine the quality and suitability of the product for their particular application and circumstances. Such testing should be performed under conditions identical to those to which the final component/product may be subjected. Values listed in any SHD document are for typical properties of the product or substance in question and are not intended to be used in establishing either statistical specifications nor engineering basis values. They do not constitute either minimum or maximum values for the product or substance in question.

SHD/MISC/945 Issue: 1 21st June 2022